Создание потоков
Создание потоков
Начнем с элементарного примера. Допустим, вы хотите запустить в отдельном потоке процедуру, которая в бесконечном цикле уменьшает значение счетчика. Процедура определяется в составе класса:
Public Class WillUseThreads
Public Sub SubtractFromCounter()
Dim count As Integer
Do While True count -= 1
Console.WriteLlne("Am in another thread and counter ="
& count)
Loop
End Sub
End Class
Поскольку условие цикла Do остается истинным всегда, можно подумать, что ничто не помешает выполнению процедуры SubtractFromCounter. Тем не менее в многопоточном приложении это не всегда так.
В следующем фрагменте приведена процедура Sub Main, запускающая поток, и команда Imports:
Option Strict On Imports System.Threading Module Modulel
Sub Main()
1 Dim myTest As New WillUseThreads()
2 Dim bThreadStart As New ThreadStart(AddressOf _
myTest.SubtractFromCounter)
3 Dim bThread As New Thread(bThreadStart)
4 ' bThread.Start()
Dim i As Integer
5 Do While True
Console.WriteLine("In main thread and count is " & i) i += 1
Loop
End Sub
End Module
Давайте последовательно разберем наиболее принципиальные моменты. Прежде всего процедура Sub Man n всегда работает в главном потоке (main thread). В програм-мах .NET всегда работают минимум два потока: главный и поток сборки мусора. В строке 1 создается новый экземпляр тестового класса. В строке 2 мы создаем делегат ThreadStart и передаем адрес процедуры SubtractFromCounter экземпляра тестового класса, созданного в строке 1 (эта процедура вызывается без параметров). Благодаря импортированию пространства имен Threading длинное имя можно не указывать. Объект нового потока создается в строке 3. Обратите внимание на передачу делегата ThreadStart при вызове конструктора класса Thread. Некоторые программисты предпочитают объединять эти две строки в одну логическую строку:
Dim bThread As New Thread(New ThreadStarttAddressOf _
myTest.SubtractFromCounter))
Наконец, строка 4 «запускает» поток, для чего вызывается метод Start экземпляра класса Thread, созданного для делегата ThreadStart.
Вызывая этот метод, мы указываем операционной системе, что процедура Subtract должна работать в отдельном потоке.
На рис. 10.1 показан пример того, что может произойти после запуска программы и ее последующего прерывания клавишей Ctrl+Break. В нашем случае новый поток запустился лишь после того, как счетчик в главном потоке увеличился до 341!
Рис. 10.1. Простая многопоточная программно время работы
Если программа будет работать в течение большегошромежутка времени, результат будет выглядеть примерно так, как показано на рис. 10.2. Мы видим, что выполнение запущенного потока приостанавливается и управление снова передается главному потоку. В данном случае имеет место проявление вытесняющей мно-гопоточности посредством квантования времени. Смысл этого устрашающего термина разъясняется ниже.
Рис. 10.2. Переключение между потоками в простой многопоточной программе
При прерывании потоков и передаче управления другим потокам операционная система использует принцип вытесняющей многопоточности посредством квантования времени. Квантование времени также решает одну из распространенных проблем, возникавших прежде в многопоточных программах, — один поток занимает все процессорное время и не уступает управления другим потокам (как правило, это случается в интенсивных циклах вроде приведенного выше). Чтобы предотвратить монопольный захват процессора, ваши потоки должны время от времени передавать управление другим потокам.
Если программа окажется «несознательной», существует другое, чуть менее желательное решение: операционная система всегда вытесняет работающий поток независимо от уровня его приоритета, чтобы доступ к процессору был предоставлен каждому потоку в системе.
Поскольку в схемах квантования всех версий Windows, в которых работает .NET, каждо-му потоку выделяется минимальный квант времени, в программировании .NET проблемы с монопольным захватом процессора не столь серьезны. С другой стороны, если среда .NET когда-нибудь будет адаптирована для других систем, ситуация может измениться.
Если включить следующую строку в нашу программу перед вызовом Start, то даже потоки, обладающие минимальным приоритетом, получат некоторую долю процессорного времени:
bThread.Priority = ThreadPriority.Highest
Рис. 10.3. Поток с максимальным приоритетом обычно начинает работать быстрее
Рис. 10.4. Процессор предоставляется и потокам с более низким приоритетом
Команда назначает новому потоку максимальный приоритет и уменьшает приоритет главного потока. Из рис. 10.3 видно, что новый поток начинает работать быстрее, чем прежде, но, как показывает рис. 10.4, главный поток тоже получает управление (правда, очень ненадолго и лишь после продолжительной работы потока с вычитанием). При запуске программы на ваших компьютерах будут получены результаты, похожие на показанные на рис. 10.3 и 10.4, но из-за различий между нашими системами точного совпадения не будет.
В перечисляемый тип ThreadPrlority входят значения для пяти уровней приоритета:
ThreadPriority.Highest
ThreadPriority.AboveNormal
ThreadPrlority.Normal
ThreadPriority.BelowNormal
ThreadPriority.Lowest